Tomsk-kuhnja.ru

Кухни Томска
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

На что влияет подвижность бетонной смеси, и как ее измерить

На что влияет подвижность бетонной смеси, и как ее измерить

Один из самых востребованных материалов в строительстве — бетон.

Наряду с основной характеристикой бетона — прочностью — большое значение имеет удобоукладываемость бетонной смеси, поскольку она влияет на трудозатраты при производстве бетонных работ и качестве готовых контрукций.

Удобоукладываемость бетонного раствора: что это такое

Бетонный камень — прочный строительный материал, продукт реакций гидратации, протекающих в водном растворе цемента. Дополнительно в состав могут быть добавлены заполняющие компоненты:

  1. песок;
  2. щебень;
  3. гравий.

Количество воды в составе бетонного раствора может быть разным.

Важно!

Показывает количество воды в составе бетонного теста водоцементное соотношение. Обычное значение в/ц, как правило, 0,3—0,55. Для реакции гидратации достаточно в/ц менее 0,3, но смесь получается очень густой.

Удобоукладываемость бетона зависит от двух параметров:

  1. подвижность;
  2. расслаиваемость.

Подвижность бетона

Подвижностью называется способность бетонного раствора самопроизвольно растекаться под влиянием собственного веса или незначительной обработки. Чем больше воды в растворе, тем он подвижнее.

По подвижности все смеси делятся на 3 вида:

  1. подвижные;
  2. жесткие;
  3. сверхжесткие.

Расслаиваемость бетонного раствора

Расслаиваемость смеси связана с ее подвижностью. Чем больше в растворе воды, тем выше его расслаиваемость, то есть осаждение заполнителей и отсекание воды.

Расслаиваемость регламентируется по ГОСТ 10181.4-81.

Для определения расслаиваемости существуют разные методы. Например, смеси дают отстояться и собирают сверху воду пипеткой. Исходя из соотношения собранной воды к объему раствора определяют расслаиваемость.

Как определяют подвижность бетонной смеси

Для определения текучести бетона используют метод испытания с конусом Абрамса, который также называется «испытанием бетона на осадку».

Конус абрамса

Этот метод используется в отечественной практике и соответствует европейским нормам.

Видео: Конус Абрамса

Требования к конусу

Конус Абрамса изготавливают из листовой стали не менее 1,5 мм толщиной. Его внутренняя поверхность имеет шероховатость не более 40 мкм. Есть два вида конуса: нормальный и увеличенный.

Требования к конусу

Нормальный конус используют для растворов, содержащих заполнители фракции не более 40 мм. Для смесей с более крупным заполнителем применяется увеличенный конус.

Как проводится испытание бетона на осадку

Перед проведением испытаний внутреннюю поверхность конуса очищают и смачивают.

Конус устанавливают на металлический лист и заполняют его бетонной смесью с помощью воронки. Смесь закладывается в 3 слоя (для марок П1—П3), причем каждый слой уплотняется штыкованием при помощи металлического стержня 25 раз (в увеличенном конусе — по 56 раз для каждого слоя). Для марок П4—П5 конус заполняется в один прием, а штыкование применяется 10 раз в конусе нормального размера или 20 — в увеличенном.

Когда смесь уложена и уплотнена, излишек срезают кельмой по верхней кромке и, не позднее, чем через 3 минуты плавно снимают конус (в течение 5—7 секунд).

Затем измеряют осадку конуса бетона и сравнивают с высотой металлического конуса. Для увеличенного конуса значение умножают на 0,67.

Видео: Учимся определять подвижность бетона

Классификация бетона по удобоукладываемости

В зависимости от величины осадки конуса выделяют 5 марок бетонной смеси по удобоукладываемости, где П1 — малоподвижная смесь, а П5 — текучая.

Классификация бетона по удобоукладываемости

Жесткие и сверхжесткие смеси осадку конуса не дают. Жесткость смеси измеряют при помощи специального прибора (технического вискозиметра), который уплотняет смесь вибрацией. В зависимости от необходимого времени (в секундах) на обработку, смеси классифицируют по жесткости на жесткие и сверхжесткие.

Классификация бетона по удобоукладываемости

Факторы, влияющие на подвижность

Представим себе бетонные растворы с разным содержанием воды. Густой раствор с низким водоцементным соотношением держит форму и не растекается. Чем выше водоцементное соотношение, тем выше текучесть раствора. Таким образом, основной фактор, влияющий на подвижность бетонной смеси — пропорции воды к цементу.

Но чем больше в растворе воды, тем меньше прочность готовой конструкции.

Казалось бы, выход – уменьшить количество воды в смеси, но густые растворы тяжело заполняют опалубку, особенно, если конструкция густо армирована. Требуется приложить много усилий и затрат электроэнергии на уплотнение бетонной смеси в опалубке; в противном случае, в готовой конструкции будут пустоты, что снизит ее прочность.

Подвижность бетонной смеси зависит также от следующих факторов:

  1. Вид цемента. Портландцемент, содержащий кремнеземистые компоненты, позволяет получить более подвижные смеси.
  2. Размер и форма заполняющих материалов. Крупные заполнители увеличивают подвижность бетона.
  3. Наличие примесей в песке. Примесь глины снижает текучесть цементной смеси.

В настоящее время существует простой, экономически целесообразный и эффективный метод повышения подвижности бетона без снижения его прочностных характеристик. Это применение пластификаторов.

Зависимость пластичности и прочности смеси от количества воды и добавления пластификатора

В качестве пластифицирующих добавок используют:

  1. хлористые соли;
  2. электролиты;
  3. поверхностно-активные вещества;
  4. клей ПВА-МБ;
  5. известь (для штукатурных цементных растворов).
Читайте так же:
Моу сош пос цементный расписание

У каждого из этих видов добавок есть свои ограничения, кроме того, не всегда возможно точно подобрать дозировку и рассчитать эффект.

Чтобы получить гарантированный результат, применяют пластификаторы промышленного производства, которые могут поставляться как в форме порошка, так и в форме жидкости, удобной для дозирования и добавления в раствор.

Пластифицирующие добавки подразделяются на 4 группы в зависимости от силы воздействия на бетонный раствор.

Помимо увеличения пластичности, применение пластификаторов обеспечивает дополнительные преимущества:

  1. Экономия цемента. Например, пластификаторы CEMMIX Plastix и CemPlast позволяют экономить до 10—15% цемента.
  2. Экономия воды.
  3. Улучшение смешиваемости раствора.
  4. Предотвращение расслаивания смеси.
  5. Увеличение срока «жизни» раствора, что может быть важно при необходимости транспортировки.
  6. Качественное заполнение опалубки.
  7. Самоуплотнение смеси, благодаря чему можно уменьшить затраты на ее обработку.
  8. Более быстрый набор прочности (например, раствор с добавкой для теплых полов CemThermo показывает марочную прочность бетона уже на 10-й день, то есть прочность через 28 суток будет выше расчетной).
  9. Улучшение сцепления с арматурой.

Пластификаторы испытаны в лаборатории, их точная дозировка рассчитана. Они не оказывают негативного влияния на арматуру и не провоцируют появление высолов на поверхности бетона.

Как применяются в строительстве смеси разной подвижности

Подвижные смеси классифицируются на 4 категории, с П1 по П5:

  1. П1 — малоподвижные. Наиболее густые смеси. Используются для монолитных конструкций (например, лестниц). Обязательно применяется механическое уплотнение бетонной смеси.
  2. П2—П3 используются часто, подходят для большинства стандартных конструкций. Подвергаются уплотнению.
  3. П4 применяются для армированных конструкций, например, колонн, высоких фундаментов. Не требуют уплотнения.
  4. П5 — текучие смеси (литьевые) применяются только в герметичных опалубках. Подходят для густоармированных конструкций.

Пористость бетона. Что это такое, и на что она влияет

На вид готовый бетон — сплошная плотная субстанция. На самом деле, в структуре бетона имеются поры.

Пористость и плотность обратны по отношению друг к другу: чем выше пористость бетона, тем ниже его прочность.

Как появляются поры в бетоне?

Чтобы понять, откуда в бетоне поры, нужно представлять процесс образования бетонного камня. Составляющие цемента, смешиваясь с водой, вступают в реакции гидратации, в ходе которых образуются новые кристаллические соединения. Но для реакции нужно меньше воды, чем необходимо для замешивания более-менее пластичного раствора, поэтому часть воды не вступает в реакцию. Кроме того, смесь захватывает воздух, который также способствует появлению пор.

Поры в бетоне уменьшают его плотность (и, соответственно, массу кубометра бетона), следовательно, снижают и его прочность.

Применение пластификаторов позволяет более полно вовлечь цемент в реакции гидратации и уменьшить воду затворения, благодаря чему уменьшается пористость бетона: количество пор и их диаметр уменьшается, что повышает плотность и, следовательно, прочность бетона.

Другие факторы, влияющие на плотность бетона

Помимо плотности бетонного камня как такового, на плотность бетона оказывает влияние состав смеси, в том числе, заполнители:

  1. В самые тяжелые бетоны добавляют стальную стружку. Плотность такого бетона свыше 2500 кг/куб. м
  2. Плотность тяжелых бетонов от 2100 до 2500 кг/куб. м. В качестве заполнителей используется диабаз, гранит, известняк.
  3. Облегченный бетон с плотностью 1800—2000 кг/куб. м изготавливают, применяя в качестве заполнителя щебень.
  4. При изготовлении легких бетонов применяют пористые заполнители — керамзит, туф, вспученный шлак и пемзу.

Температура бетонной смеси

Для набора прочности бетона основополагающее значение имеет температура смеси.

Важно!

Оптимальная температура твердения бетона +18—20°С. Чем ниже температура, тем медленнее происходит набор прочности, и в итоге это влияет на конечные характеристики прочности бетона. При +5°С твердение практически останавливается, а при 0°С и ниже полностью прекращается. Напротив, при высоких температурах +30°С и выше, бетон твердеет слишком быстро. Обе ситуации снижают прочность готовых бетонных конструкций.

Температура бетонной смеси

Вот почему в условиях неподходящей температуры окружающей среды применяются меры ухода за бетоном: укрывание, прогрев либо, напротив, поливание холодной водой, чтобы обеспечить оптимальные условия набора прочности.

Сохраняемость свойств бетона

Сохраняемостью свойств называют способность бетонной смеси сохранять удобоукладываемость в течение заданного времени.

Применение пластификаторов позволяет замешивать смеси повышенной сохраняемости. По сравнению со смесями, не содержащими специальные добавки, смеси повышенной сохраняемости имеют следующие преимущества:

  1. переносят длительную транспортировку без потери свойств;
  2. оптимизируют организацию арматурных, опалубочных и бетонных работ;
  3. повышают монолитность конструкций благодаря уменьшению количества швов;
  4. уменьшают потери бетона, связанные с быстрым схватыванием;
  5. снижают объем работ и затраты электроэнергии;
  6. повышают качество бетонных конструкций.

Формула идеального бетона

Качество бетонных конструкций напрямую зависит от свойств бетонной смеси: подвижности, удобоукладываемости, плотности и пористости, способности смеси сохранять ее свойства, а также от условий, в которых происходит ее отвердевание. Улучшить все перечисленные показатели смеси позволяет применение специальных добавок для бетона — пластификаторов. Современные пластификаторы — экономичные и удобные в применении жидкости, которые улучшают удобоукладываемость бетона, повышают его плотность и прочность, и позволяют экономить время, расходные материалы, трудозатраты и электроэнергию при производстве бетонных работ.

Читайте так же:
Гармонизация стандартов по цементу

Прочность бетона

Основная классификация бетона базируется именно на этой характеристике. Марка М15 отличается самой низкой прочностью, М800 наоборот самой высокой. Такая система дает возможность заранее спрогнозировать поведение той или иной марки, и выбрать материал, который будет полностью соответствовать расчетным нагрузкам.

Например, легкие ограждения и теплоизоляционные перегородки могут выполняться из марок М15-М50, М100-150 оптимальны для укладки монолитных оснований, а для ответственных ЖБ сооружений используют бетон не ниже М300.

Сегодня широко применяется также классификация бетона по прочности на сжатие В1 – В22. Различаются эти системы тем, что марки бетона рассчитываются по среднему, а классы по гарантированному фактическому значению прочности. Разрабатывая инженерно-проектную документацию, специалисты, как правило, оперируют понятием классов В. Среди строителей и в быту более понятной и привычной считается система марок.

Легко разобраться в соотношениях марок и классов можно, воспользовавшись следующей таблицой «Соотношение прочности бетона, соответствующих марок и классов по прочности на сжатие»:

Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие

Марка бетона по прочности на сжатиеКласс бетона по прочности на сжатиеУсловия марка бетона*, соответствующая классу бетона по прочности на сжатие
Бетон всех видов, кроме ячеистогоОтличия от марки бетона (в %)Ячеситый бетонОтличие от марки бетона (в %)
М 15В 114,47-3,5
М 25В 1,521,7-13,2
М 25В 228,9415,7
М 35В 2,532,74-6,536,173,3
М 50В 3,545,84-8,150,641,3
М 75В 565,48-12,772,34-3,5
М 100В 7,598,23-1,8108,518,5
М 150В 10130,97-12,772,34-3,55
М 150В 12,5163,719,1180,85
М 200В 15196,45-1,8217,02
М 250В 20261,934,8
М 300В 22,5294,68-1,8
М 300В 25327,429,1
М 350В 25327,42-6,45
М 350В 27,5360,182,9
М 400В 30392,9-1,8
М 450В 35459,391,9
М 500В 40523,874,8
М 600В 45589,351,8
М 700В 50654,84-6,45
М 700В 55720,322,9
М 800В 60785,81-1,8
*Условная марка бетона — среднее значение прочности бетона серии образцов (кгс/см 2 ), приведенной к прочности образца базового размера куба с ребром 15 см, при номинальном значении коэффицента вариации прочности бетона.

От чего зависит прочность бетона

При выполнении любых строительно-монтажных работ очень важно соблюдать все условия, влияющие на прочность бетона в будущем сооружении. Основные факторы, задающие прочностные характеристики бетону:

  • Качество цемента. Из более прочного, быстро твердеющего и качественного цемента получается бетон с аналогичными показателями;
  • Объем цемента. Его количество на один кубометр должно быть таким, чтобы не оставалось пустот в песке, щебне или другом заполнителе. Образованию пустот способствует также и избыточное количество жидкости, которая при засыхании испаряется и понижает прочность бетона;
  • Заполнитель. От того, насколько качественный наполнитель напрямую зависит прочность готового материала. Однородность, чистота и правильная геометрическая форма гранул значительно упрочняют бетон;
  • Замешивание. Чем дольше и интенсивней замешивание, тем прочнее будет конечный результат;
  • Соблюдение правил и норм укладки смеси. Работая с цементным раствором, важно четко придерживаться технологии его нанесения. Использование специальных профессиональных вибраторов способно на 20-30% увеличить прочность бетона.

Методика определения прочности бетона

При промышленном производстве бетона или ЖБИ проводятся лабораторные исследования, выясняющие точную прочность бетона. Методы определения прочности регламентируются ГОСТами и СНиПами. Различают методы разрушающего и неразрушающего контроля. Первые считаются более точными, но их далеко не всегда можно применить на практике.

Связано это с тем, что разрушающие испытания требуют наличия анализируемого образца, извлечь который без нарушения целостности конструкции не представляется возможным. Поэтому чаще используют неразрушающие способы, основывающиеся на анализе показаний измерительных приборов.

Определение прочности бетона

Основные методы неразрушающего контроля

  • Анализ пластической деформации. Стальной шарик ударяется с поверхностью, оставляя на ней отпечаток. На измерении его размеров основывается вычисление прочности. Способ считается самым старым, дешевым и одновременно популярным. Зачастую испытания ведутся с помощью специального инструмента – молотка Кашкарова;
  • Определение упругого отскока. Определяется при помощи склерометра. При ударе рабочего тела по поверхности измеряется величина возвратного отскока;
  • Энергия удара. Это самый распространенный импульсный метод, использующийся в приборах, выпускаемых отечественными производителями;
  • Отрыв со сколом. Определяется уровень усилия, которое нужно приложить для отрыва анкера из куска бетона. Полученные показатели вписываются в паспорт на бетон.
Читайте так же:
Имеет ли срок годности цемента

Для готовых конструкций, которые эксплуатировались в определенный промежуток времени, используют ультразвуковой контроль прочности. Принцип измерения основан на определении скорости распространения ультразвуковой волны сквозь материал. Для этого с двух противоположных сторон устанавливают специальные преобразователи, передающие акустический контакт.

По существующим отечественным нормативам организации, изготавливающие бетон, должны использовать разрушающий контроль для проверки каждой партии на прочность. Застывший образец устанавливается под пресс и постепенно разрушается. Полученный показатель измеряется в кгс/см 2 и определяет основную марку материала.

Определение консистенции цементного раствора

Для этого отвешивают 1500г песка и 500г цемента, высыпают их в сферическую чашу, смоченную водой, и перемешивают цемент с песком лопаткой в течение 1 минуты. Затем в центре сухой смеси делают лунку и вливают в нее 200г воды (В/Ц=0,4). После того, как вода впитается, еще раз перемешивают смесь в течении 1 минуты. Затем раствор переносят в механический смеситель, где его перемешивают в течение 2,5 минут. По окончании перемешивания определяют консистенцию цементного раствора. Для этого используют встряхивающий столик и металлическую форму-конус.

Перед укладкой смеси в конус внутреннюю поверхность его и стеклянный диск слегка увлажняют. Растворную смесь укладывают в форму-конус двумя слоями равной толщины. Каждый слой уплотняют металлической штыковкой. Нижний слой штыкуют 15 раз, а верхний — 10 раз. Во время укладки и уплотнения раствора конус прижимают рукой к стеклянному диску. Излишек раствора срезают ножом и форму-конус медленно поднимают. Вращая рукоятку маховика, встряхивают столик 30 раз в течение 30с, при этом конус цементного раствора расплывается. При помощи штангенциркуля или стальной линейки измеряют расплыв конуса по нижнему основанию в двух взаимно перпендикулярных направлениях.

Консистенцию раствора считают нормальной, если расплыв конуса оказался равным 106-115мм. При меньшем расплыве раствор приготавливают заново, несколько увеличив количество воды затворения. Результаты опыта оформляют в виде таблицы №14.

Таблица №14. Определение консистенции цементного раствора

Наименование показателейОпределение
Масса цемента, г
Масса песка, г
Продолжительность перемешивания цемента с песком, мин
Масса воды, г
В/Ц
Продолжительность перемешивания раствора вручную, мин
Продолжительность перемешивания раствора в мешалке
Количество штыкований нижнего слоя раствора
Количество штыкований верхнего слоя раствора
Количество встряхиваний на столике

Водопотребность раствора выражают в виде водоцементного отношения; его значение записывают в журнал и в дальнейшем пользуются при приготовлении раствора для образцов — балочек.

Изготовление образцов-балочек из цементно-песчанного раствора состава 1:3

Образцы — балочки формуют в трехгнездных металлических формах. Форму тщательно собирают, внутреннюю поверхность стенок и поддона слегка смазывают машинным маслом. Цементный раствор нормальной консистенции для изготовления трех образцов-балочек приготовляют по той же методике, что и для определения нормальной густоты раствора. Подготовленную форму с насадкой прочно закрепляют на стандартной виброплощадке, создающей вертикальные колебания с амплитудой 0,35мм и частотой 2800-3000 колебаний в минуту. Готовый раствор укладывают в гнезда-формы (слоями приблизительно 1) см и включают виброплощадку. Затем в течение 2 минут вибрации все три гнезда формы равномерно небольшими порциями заполняют раствором. По истечении 3 минут уплотнения виброплощадку выключают и снимают форму. Смоченным водой ножом срезают излишки раствора, зачищают поверхность образцов вровень с краями формы и маркируют образцы.

Готовые образцы в формах хранят в ванне с гидравлическим затвором в течение 24±2 часа. Затем их осторожно расформовывают и укладывают в горизонтальном положении в ванну с водой, где хранят до момента испытаний. Образцы в воде не должны соприкасаться между собой. Необходимо, чтобы объем воды в сосуде для хранения образцов был в четыре раза больше объема образцов. Температуру воды в ванне постоянно поддерживают 20±2 о С. Для определения марки цемента образцы-балочки через 28 суток с момента их изготовления испытывают на изгиб, а затем каждую из полученных половинок – на сжатие.

Испытание на изгиб [[9]]производят на прессе гидравлическом ПГМ-100МГ4. Машина снабжена счетчиком, который автоматически, в зависимости от положения груза, показывает напряжение в балочке в данный момент испытания. В момент разрушения на счетчике остается показание предела прочности при изгибе. Предел прочности образцов цементного раствора при изгибе вычисляют как среднее арифметическое из двух наибольших результатов испытания трех образцов-балочек.

Читайте так же:
Жидкость для растворения цемента

Испытание на сжатие половинок балочек производят на гидравлическом прессе. Для передачи нагрузки на половинки балочек применяют плоские стальные шлифованные пластинки размером 40х62,5 мм (площадь 25 см 2 ). Каждую половинку балочки помещают между двумя пластинками таким образом, чтобы боковые грани, которые при изготовлении прилегали к продольным стенкам формы, совпадали с рабочими поверхностями пластинок, а упоры пластинок плотно прилегали к торцевой гладкой стенке образца (рис. 11). При испытании образца на сжатие скорость увеличения нагрузки должна быть около 5 кН/с.

Рис. 11.Схема испытания образцов-балочек: а) — на изгиб; б) — на сжатие

Предел прочности при сжатии Rсж, МПа, каждого образца вычисляют по формуле:

где P – разрушающая нагрузка, кН;

S – площадь грани, см 2 .

Предел прочности при сжатии образцов, изготовленных из испытываемого цементного раствора, вычисляют как среднее арифметическое четырех наибольших результатов шести испытанных образцов.

Предел прочности при осевом сжатии половинок балочек, испытанных в возрасте 28 суток, называют активностью цемента.

После проведения лабораторных испытаний цемента оценивают его качество и по активности устанавливают марку или класс цемента в соответствии со стандартами. Результаты опыта оформить в виде таблицы №15.

Таблица №15. Результаты испытания образцов-балочек на сжатие

Показания№ образца
Рабочая площадь пластинки, см 2
Показания манометра пресса
Разрушающая нагрузка, кН
Предел прочности при сжатии, МПа

Вопросы для самоконтроля

1. Что такое цемент? Как классифицируют цемент по назначению?

2. Приведите виды цемента по вещественному составу и опишите его основные компоненты.

3. Перечислите основные требования к материалам при производстве цемента.

4. Как влияют добавки на свойства цемента?

5. Что такое портландцемент? Основные минералы клинкера портландцемента.

6. Как влияет на свойства портландцемента различное соотношение минералов клинкера?

7. Опишите методику определения тонкости помола цемента.

8. Что такое нормальная густота цементного теста? Как ее определяют?

9. Как определяют равномерность изменения объема цементного теста?

10. Укажите причину возникновения неравномерности изменения объема цементного теста при твердении.

11. Опишите методику определения нормальной густоты цементно-песчаного раствора.

12. Как изготавливаются и в каких условиях выдерживаются образцы перед определением марка цемента по прочности?

13. Опишите методику определения предела прочности на изгиб и сжатие цементных образцов.

Список литературы

[1]. Юдина Л.В. Испытание и исследование строительных материалов: Учебное пособие. – М.: Издв-во АСВ, 2010. – 232с.

[2]. Попов К.Н. Каддо М.Б Строительные материалы и изделия. Изд–ие перераб. и доп. – М.: Высшая шк., 2006 – 439с.

[3]. Дворкин Л.И., Дворкин О.Л. Строительное материаловедение. – М.: Инфра-Инженерия, 2013 – 832 с.

[4]. ГОСТ 9179-77. Известь строительная. Технические условия[Текст]. – Взамен ГОСТ 9179-70; введен 1979-01-01- М.:Госстрой России, 1989.

[5]. ГОСТ 22688-77. Известь строительная. Методы испытаний [Текст]. – Взамен ГОСТ 9179-70; введен 1979-01-01- М.:Госстрой России, 1979.

[6]. Попов Л.Н., Попов Н.Л. Лабораторные работы по дисциплине «Строительные материалы и изделия». Учебное пособие.- М: ИНФРА-М, 2003. — 219 с.

[7]. ГОСТ 125-79*. Вяжущие гипсовые. Технические условия [Текст]. – Взамен ГОСТ 125-70, ГОСТ 5.1845-73; введен 1980-07-01- М.: ИПК Издательство стандартов, 2002.

[8]. ГОСТ 31108-2003. Цементы общестроительные. Технические условия [Текст]. – введен 2004-09-01- М.: ФГУП ЦППП, 2004.

[9]. ГОСТ 310.4-8. Цементы. Методы определения, предела прочности при изгибе и сжатии [Текст]. – Взамен ГОСТ 310.4-76; введен 1983-07-01- М.: ИПК Издательство стандартов, 2003.

Методические указания по лабораторным работам по дисциплине «Строительные материалы» для студентов всех форм обучения по направлению «Строительство»

кандидат технических наук, доцент Плеханова Т.А.

кандидат технических наук, доцент Полянских И.С.

кандидат технических наук, профессор Юдина Л.В.

ассистент Гордина А.Ф.

В редакции составителей

Подписано в печать 00.04.08. Усл. печ. л. 2,0. Тираж 50 экз. Заказ № 55

Издательство Ижевского государственного технического университета имени М.Т. Калашникова

Определение прочности цементного раствора

Прочность растворов, уложенных а основание, не отсасывающее воду, зависит от тех же двух основных факторов, что и прочность бетонов.

  1. от активности примененного вяжущего вещества;
  2. от величины цементноводното отношения (для цементных растворов) или вяжущеводного (для смешанных и других растворов) отношения, т. е. весового соотношения вяжущего и воды, израсходованных на изготовление раствора.

Например, прочность (R28) пластичных растворов, изготовленных на портландцементе разных марок и твердевших 28 дней на плотном основании, не способном отсасывать воду, можно приближенно оценить по следующей формуле:

где: Rц пл — активность цемента (определяемая испытаниями образцов из пластичных растворов), а Ц/В — цементноводное отношение.

Это формула отличается от аналогичной формулы для бетонов только величиной коэффициентов, отражающих главным образом влияние крупности заполнителей. Уравнения подобного типа позволяют получить лишь приближенные результаты, так как в действительности изменение прочности растворов и бетонов при изменении величины Ц/В характеризуется не прямой б—б, а сравнительно сложной кривой аа.
Средняя часть этой кривой в определенных пределах, имеющих практическое значение, может быть заменена прямой (секущей или касательной).

Читайте так же:
Опилки с цементом пропорции стены

Растворы на одних и тех же вяжущем и песке требуют для получения одинаковой подвижности приблизительно одного и того же количества воды В, сравнительно мало меняющегося при изменении соотношения между вяжущим и песком. Поэтому для таких случаев можно принять приближенную зависимость прочности раствора не от Ц/В, а от расхода цемента Ц: R28 = Aо • Rц (Ц — Цо)

где: Ао — коэффициент, характеризующий качество материалов (вяжущего и песка), зависящий от метода испытания активности цемента, от условии укладки раствора (на порщггое или плотное основание) и от условий твердения (срока, температуры и влажности);

Цо — расход вяжущего, при котором прочность раствора практически близка к нулю вследствие недостаточно равномерного распределения небольшого количества цемента в растворе.

Особенности твердения раствора на пористом основании

Растворы, уложенные на пористое основание, всасывающее воду (например, на сухой кирпич), сравнительно быстро теряют часть воды. Вследствие этого пористость раствора уменьшается, а прочность его возрастает до тех пор, пока не произойдет чрезмерного обезвоживания раствора. Если основание отсасывает умеренное количество воды, то частицы раствора сближаются, а плотность и, следовательно, прочность его и морозостойкость заметно увеличиваются. В общем воздействие пористого основания на подвижный раствор напоминает эффект вакуумирования подвижной смеси. Этот эффект уплотнения проявляется тем сильнее, чем меньше содержится в растворе дисперсных частиц и чем больше в растворе воды.

что добавляют в цементный раствор для прочности

Прочность растворов, с невысоким содержанием цемента

Прочность растворов, с невысоким содержанием цемента при твердении на пористом основании повышается в 2—3 раза (а иногда и более) по сравнению с растворами того же состава, но твердевшими на плотном основании. Прочность же растворов, содержащих много цемента, повышается при твердении на пористом основании значительно меньше (обычно в 1,2—1,5 раза)

Чтобы приблизиться к действительным условиям работы растворов в кладке, их марки определяют на образцах малых размеров (обычно 7х7х7 см но лучше 3х3х3 см).
Образцы изготовляют из растворов с подвижностью, требуемой условиями укладки, и помещают их в формы с пористым основанием, способным отсасывать из растворов воду.
Эти формы не имеют дна и устанавливаются на кирпич, водопоглощение которого должно находиться в пределах 10—15%, а влажность не превышать 2%. На кирпич кладут лист непроклееиной бумаги, а затем ставят форму, которую заполняют раствором (с небольшим избытком) и уплотняют штыкованием.

Когда кирпич отсасывает воду, то объем раствора заметно уменьшается. После того как объем перестанет уменьшаться, избыток раствора срезают ножом. Образцы освобождают от форм через сутки и хранят их до момента испытания; (обычно до 28 дней) в условиях, соответствующих условиям эксплуатации (надземная или подземная кладка).
Обычный кирпич отсасывает воду из свежеуложенного раствора весьма интенсивно и тем больше, чем больше воды было в растворе и чем меньше в нем было дисперсных частиц. В результате в растворах одного и того же состава, приготовленных с различным количеством воды, остается примерно одинаковое количество воды. В этом случае вяжущеводное отношение перестает быть решающим фактором прочности растворов, и его можно заменить в расчете величиной расхода вяжущего.

Поэтому прочность растворов, твердеющих на пористом основании практически можно считать зависящей от:

  1. активности вяжущего вещества;
  2. расхода его на единицу объема раствора;
  3. качества песка, т. е. от крупности его, величин пустотности и поверхности, а также от содержания глинистых и других примесей.

Ориентировочно зависимость прочности смешанных (например, цементно-известковых) растворов от расхода цементов можно выразить формулой:
R =K• Rц (Ц-0,05)+4, где: Ц — расход цемента в тоннах на 1 м3 песка;
— активность цемента;

К — коэффициент, зависящий от метода определения активности цемента, от качества песка и добавки, а также от тщательности смешивания раствора. Постоянный член (+4) определяет примерную марку смешанных растворов, содержащих столь мало цемента (50 кг па 1 м3 песка), что он при обычном сроке смешивания в применяемых ныне растворомешалках не может быть равномерно распределен во всей смеси. Прочность таких растворов зависит главным образом от наличия в них достаточного количества извести. Для растворов, содержащих менее 50 кг или более 550 кг цемента, приведенная выше формула неприменима.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector