Tomsk-kuhnja.ru

Кухни Томска
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Научный журнал Современные наукоемкие технологии ISSN 1812-7320 Перечень ВАК ИФ РИНЦ 0,899

Кислотная коррозия цементного камня

Сероводород, содержащийся в скважинах, контактирует с тампонажным камнем, как в газообразном, так и в растворенном состоянии. В зависимости от агрегатного состояния сероводорода механизм и скорость коррозионного поражения камня существенным образом меняются.

Сероводород является коррозионно-активным кислым газом, оказывает интенсивное разрушающее действие на тампонажные цементы. Это создает серьезную опасность экологическому равновесию, как на поверхности, так и в недрах в широком смысле этого слова.

Когда тампонажный камень взаимодействует с сероводородом, растворенном в пластовой воде, поражение камня протекает послойно. Сероводород, диффундируя вглубь цементного камня, вступает в химическую реакцию с растворенной гидроокисью кальция. В результате химических реакций поровая жидкость обедняется щелочью, что приводит к нарушению термодинамического равновесия между твердой и жидкой фазами цементного камня. Продукты твердения продолжают растворяться и гидратировать с выделением свободной гидроокиси кальция. Прежде всего, разрушается твердая фаза, представленная кристаллическим гидратом окиси кальция, высокоосновными алюминатами, гидросиликатом и гидроферритом кальция.

Нерастворимая часть цементного камня, химически инертная по отношению к сероводороду, образует буферную зону. Она представлена продуктами разложения гидратных фаз в виде гелей SiO2 и Al(OH)3 и продуктами коррозии в твердой (CaS, FeS) и жидкой фазе, является более проницаемой, чем исходный камень, т.к. реакционноспособная часть цементного камня в процессе гидролиза и растворения перешла в раствор, а затем в виде хорошо растворимых продуктов коррозии — Ca(HS) — в окружающую среду.

Если тампонажный камень контактирует с газообразным сероводородом, то последний способен проникать по открытым порам на значительную глубину в камень. Проникший газ растворяется в гелевых порах, заполненных раствором гидроокиси кальция и диссоциирует.

При pH > 11 основным продуктом взаимодействия сероводорода с гидроксидом кальция является малорастворимый сульфид кальция. По мере убывания из раствора Ca(OH)2 нарушается равновесие между твердой и жидкой фазами, что вызывает растворение и гидролиз составляющих тампонажного камня. В результате гидролиза в раствор вступают новые порции Ca(OH)2, которые связываются растворенным сероводородом. Накапливаемые в порах цементного камня сульфиды кальция вызывают в нем внутренние напряжения и последующую деструкцию. Такой вид коррозии характерен для тампонажного материала, камень на основе которого представлен свободным гидроксидом кальция, высокоосновными гидросиликатами и гидроалюминатами кальция, равновесная pH которых больше 12.

Основной причиной разрушения цементного камня на основе портландцемента является процесс межфазовых переходов

Объемное расширение опасно, когда оно происходит в уже затвердевшем цементном камне. Дело в том, что эттрингит может образовываться из продуктов гидратации С3А в результате сульфатной агрессии по уравнению

При этом наблюдается 4-6 кратное увеличение объема, что в затвердевшем камне приводит к возникновению напряжения, нарушению и разрушению структуры.

К этой группе цементов в первую очередь следует отнести портландцементы, в частности цементы ПЦТ-100, ПЦТД20-100.

Одним из путей повышения коррозионной стойкости цементного камня является метод химического ингибирования. Суть метода в дополнительном введении в состав жидкой фазы тампонажной суспензии компонентов, способных к взаимодействию с присутствующим в газе сероводородом. Образующиеся в результате продукты реакции должны представлять собой труднорастворимые соединения, способные препятствовать проникновению агрессивного агента в цементный камень.

Лучшим вариантом, конечно, будет использование специальных коррозионостойких цементов, в составе камня которых отсутствуют компоненты, способные к реакциям восстановления (шлаковые цементы, НКИ).

Имея в виду невозможность поставок специальных видов цемента, необходимо производить обработку тампонажного раствора специальными реагентами, которые сами нереакционно-способны с сероводородом, кроме того, обладают способностью связывать гидроокись кальция, нарушая цепочку образования сульфидов и гипсов. Это один из наиболее доступных путей повышения коррозионной стойкости.

Из сказанного выше следует, что повышение седиментационной устойчивости, снижения количества несвязанной воды (снижение степени фильтрации), ускорение сроков схватывания, предотвращение возможности радиальной усадки камня при твердении способствует упрочнению структуры гидратирующегося цементного камня, исключает вероятность образования микрозазора и не дает возможности проникновения вызывающего коррозию агента (сероводорода) в поровое пространство цементного камня.

Нами рекомендована комплексная обработка воды затворения для цементного раствора смесью реагента РДН-У (реагент для добычи нефти унифицированный) и стабилизатора типа КМЦ (карбоксометиллцеллюлоза).

В случае если вода затворения обработана каким-либо реагентом, преобладающим в процессе сероводородной коррозии цементного камня является взаимодействие газа с химическими добавками-регуляторами. Реакция может быть направлена так, что приведет к исчезновению функционального действия реагентов-регуляторов на растворы, и, как следствие, к катастрофическому нарушению свойств последних. Направленным регулированием кинетики процессов взаимодействия реагентов с агрессивными флюидами и комбинациями химических добавок можно защитить цементный камень от сероводородной агрессии. В этой среде преимуществом в плане защиты цементного камня от коррозии должны использоваться реагенты органического строения. При выборе неорганических реагентов нужно быть особо осторожным, т.к. вероятность реакции их с сероводородом резко возрастает.

Читайте так же:
Все химические названия цемента

В результате проведенных исследований были выявлены закономерности процессов, происходящих при формировании тампонажного камня и под действием агрессивного агента сероводорода, находящегося в жидкой фазе, на тампонажный камень, который имеет в своем составе широкую гамму реагентов, применяемых для улучшения его свойств.

Основными изменяющимися величинами, которые могут быть определены с высокой степенью точности, на стадии проектирования тампонажного состава являются: абсолютная и фазовая проницаемости, доля свободного поперечного сечения пор, прочность на изгиб, свободная поверхность, приходящаяся на единицу объема и скорость химической реакции сероводорода с компонентами цементного камня. Так же необходимо исследовать изменение поверхности контакта агрессивного агента с цементным камнем.

Все исследуемые величины находятся в прямой зависимости от седиментационной устойчивости и степени фильтрации тампонажных суспензий. Зная результаты предварительно проведенного седиментационного анализа, можно прогнозировать реологические и физико-механические свойства тампонажной суспензии и сформированного из нее тампонажного камня.

Физико-механические характеристики сформированного тампонажного камня определяют, в какой степени и за какой период в условиях эксплуатирующейся скважины произойдет диффузионное проникновение в него коррозионно-активного флюида и начнется его разрушение.

Процесс твердения тампонажных растворов сопровождается переупаковкой молекул воды. Химически связанная вода занимает объем на четвертую часть меньше, чем свободная. В результате возникает изменение объема. Высвобожденный первоначально занимаемый свободной водой объем, заполняется за счет притока воды извне, если этот приток возможен. При твердении же в межколонном пространстве или против плотных пород приток воды к цементу невозможен, а с момента возникновения замкнутых пор исключается возможность подвода воды к гидратирующемуся цементу из окружающей среды даже при твердении цемента в воде. Поэтому по мере дальнейшей гидратации цемента и расходования воды в замкнутой поре образуется вакуум. Напряжение внутри цементного камня, возникающее в результате вакуумирования замкнутых пор достигает значительных величин и приводит к усадке цементного камня. В результате этого на границе "цементный камень-обсадная колонна" образуется микрозазор. При этом не исключена возможность микро-макро-переноса по всему объему цементного камня. Газ может проходить по контактным зонам и возможно его проникновение и по самому цементному камню по каналам, возникшим в результате седиментации и диффузии газа в тампонажный раствор. Значительно снизить возникающие внутренние напряжения и усадку раствора позволяет обработка воды затворения вакуумированием до введения воды в состав вяжущего, что позволяет увеличить в несколько раз прочность самой воды путем удаления из нее растворенного газа. Нами экспериментально доказано, что такого рода обработка примерно на 10% увеличивает прочностные характеристика цементного камня.

Такие процессы наиболее вероятны в цементных камнях, сформированных из седиментационно-неустойчивых тампонажных растворов, а также у растворов с замедлителями сроков схватывания, в которых структура камня продолжительное время будет представлена открытой пористостью.

Билет 15 1. Коррозия цементного камня и способы замедления процессов разрушения камня

Коррозию цементного камня и бетона подразделяют на три основных вида в зависимости от механизма разрушения структуры:

коррозия I вида обусловлена растворением и вымыванием некоторых его составных частей (коррозия выщелачивания);

коррозия II вида обусловлена воздействием агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой соли, либо аморфные массы, не обладающие связующими свойствами;

коррозия III вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействие с агрессивной средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции

1 вид При действии воды на цементный камень вначале растворяется и уносится водой свободный Ca(OH)2, содержание которого в цементном камне через 1-3 месяца твердения достигает 10. 15%, а растворимость при обычных температурах 1,3 г/л.

После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность.

Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором. Для предупреждения коррозии I вида необходимо:

1.Создать бетоны повышенной плотности за счет интенсивного уплотнения цементного камня;

2.Использовать цементы с ограниченным содержанием C3S;

3.Вводить в цемент тонкомолотые минеральные добавки которые связывает гидроксид кальция в нерастворимые соединения Са(ОН)2 + SiO2(аморф.) + mH2O = CaO·SiO2nН2О.

4.Использовать пуццолановый цемент;


Читайте так же:
Какое время сохнет цемент

5.Карбонизация поверстного слоя бетона, путем выдерживания его на воздухе;


6.Гидроизоляция поверхности цементного камня в виде оклейки, облицовки или пропитки поверхностного слоя гидроизоляционными материалами.

2 вид: К разновидностям коррозии второго относятся кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.

Кислотная коррозия возникает при действии растворов любых кислот, за исключением поликремниевой и кремнефтористоводородной. Кислота вступает в химическое взаимодействие с Ca(OH)2, образуя растворимые соли (например, СаСl2) и соли, увеличивающиеся в объеме (CaSO42H2O): Са(ОН)2 + 2НСl = СаСl2 + 2Н2О или Са(ОН)2 + H2SO4 = CaSO4 +2H2O

Под действием кислот могут разрушаться также и гидросиликаты, гидроалюминаты и гидроферриты кальция, превращаясь в кальциевые соли и аморфные бессвязанные массы SiO2nH2O, Al2(OH)3, Fe2(OH)3.

Меры защиты от кислотной коррозии: При слабой кислотной коррозии (рН=4-6) цементный камень защищают кислотостойкими материалами (окраской, пленочной изоляцией и т. п.).


По стойкости к действию кислот слабой концентрации цементы можно расположить в таком порядке: глиноземистый цемент, пуццолановый ПЦ и обычный ПЦ.

При сильной кислотной коррозии (рН<4) вместо обычного портландцемента используют кислотоупорный цемент и кислотостойкие заполнители или полимерные связующие.

Разница в стойкости цементов к действию сильно концентрированных кислот почти не ощутима поскольку разрешение происходит очень быстро. углоксилотная коррозия является разновидностью общекислотной коррозии.

Она развивается при действии на цементный камень воды, содержащей свободный диоксид углерода в виде слабой угольной кислоты сверх равновесного количества.

Избыточная (агрессивная) углекислота разрушает ранее образовавшуюся карбонатную пленку вследствие образования хорошо растворимого бикарбоната кальция: CaCO3 + СO2 + Н2О= Са(НСO3)2 При этом, чем больше содержится Н2СО3 (обычно в грунтовых водах), тем выше кислотные свойства раствора и скорость коррозии. магнезиальная коррозия происходит при воздействии на Ca(OH)2 растворов магнезиальных солей, которые встречаются в грунтовой, морской и других водаx. Наиболее характерные реакции для этого вида коррозии проходят по следующей схеме: Са(ОН)2 + MgCl2 = СаСl2 + Mg(OH)2; Са(ОН)2 + MgSO4 = CaSO42H2O + Mg(OH)2 СаСl2 и CaSO42H2O хорошо растворимы в воде и вымываются из цементного камня. К тому же CaSO42H2O возникает с увеличением объема, что ускоряет появление трещин, а также коррозию

III вида. Mg(OH)2 малорастворим в воде, но выпадает в осадок в виде рыхлой аморфной массы, не обладающей связностью, которая также легко вымывается из бетона. Меры защиты от магнезиальной коррозии те же, что и при коррозии первого вида. коррозия под действием органических кислот, как и неорганических, быстро разрушает цементный камень. Вредное влияние оказывают и масла, содержащие кислоты жирного ряда (льняное, хлопковое, рыбий жир и т. п.).

Нефть и нефтяные продукты не опасны для цементного бетона, если в них нет остатков кислот, но они легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенолы, оказывают агрессивное воздействие на бетон. Коррозия возникает и под действием минеральных удобрений, особенно аммиачных (аммиачная селитра и сульфат аммония). Аммиачная селитра, состоящая в основном из NН4NO3, действует на гидроксид кальция: Са(ОН)2 + 2NH4NO3 + 2Н2О = Ca(NO3)24Н2О + 2NO3 Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона.

Из фосфорных удобрений агрессивен суперфосфат, состоящий в основном из Са(Н2РО4)2, гипса и содержащий небольшое количество свободной фосфорной кислоты. Характерной коррозией III вида является сульфатная коррозия.

Сульфаты, часто содержащиеся в природной и промышленных водах, вступают в обменную реакцию с гидроксидом кальция, образуя гипс CaSO42H2O. При действии на бетон сернокислового натрия сульфат натрия вступает в реакцию с гидроксидом кальция цементного камня: Са(ОН)2 + Na2SО4 + 2Н2О → СаSО42Н2О + 2NaОН

Разрушение цементного камня в этом случае вызывается кристаллизационным давлением кристаллов двуводного гипса. Для защиты бетона от солевой коррозии необходимо: -применять бетоны с низким В/Ц; -тщательно уплотнять бетонную смесь; -использовать воздухововлекающие и уплотняющие добавки; -применять пористые заполнители, а также цементы, обеспечивающие высокую плотность цементного камня (портландцемент без минеральных добавок); -отводить агрессивные солевые растворы от поверхности конструкции, либо изолировать их путем устройства защитных покрытий.

Борьбу с коррозией III вида следует вести, принимая во внимании следующее: — в бетонах на глиноземистом цементе или цементах с малым содержанием Cа(OH)2 невозможно образование многоосновных гидроаллюминатов кальция, чем ограничивается или исключается возможность образования гидросульфоаллюмината кальция. — введение в бетонную смесь воздухововлекающих, пластифицирующих добавок, химических добавок (CaCl2), повышающих растворимость гидрата окиси кальция и гипса, кремнеорганических веществ, способствует повышению стойкости цементного камня и бетона к коррозии. — эффективно создание защитных слоев на поверхности бетонной конструкции виде оклеечной, облицовочной или лакокрасочной изоляции.

Читайте так же:
Консистенция для цементной стяжки

2. Основные типы битумов, применяемых в строительстве и их технические свойства.

Битум – это вещество, которое изготовляется промышленным методом в результате преобразования и смешивания смол, нефтепродуктов и других органических веществ.

Битумы нерастворимы в воде и водных растворах кислот, щелочей и солей. Плотная, непористая структура делает битумы водонепроницаемыми и морозостойкими. Эти качества широко используются в строительстве, при проведении кровельных и гидроизоляционных работ.

Качество битумов определяется, исходя из таких характеристик: температуры размягчения, хрупкости, растяжимости (дуктильность), вязкости (пенетрации). О характеристиках битумов свидетельствует маркировка: БН 90/10, (битум нефтяной), строительный, первая цифра указывает на температуру размягчения, а вторая говорит о глубине пенетрации.

Плотность от 0,8-1,3 г/см 3 , теплопроводность 0,5-0,6Вт/(м* 0 С), теплоемкость 1,8-2 кДж/кг* 0 С. Существуют различные виды битума.

Строительные битумыявляются горючими веществами с температурой вспышки от 220 до 240 градусов, и температурой самовоспламенения в 368 градусов по Цельсию. Их производят методом окисления продуктов перегонки нефти, а также их соединения с экстрактами масляного производства и асфальтами. Битум строительный нашел свое применение при производстве гидроизоляционных работ по защите от влаги построек, зданий и сооружений.

Дорожные битумыбывают двух видов: вязкие и жидкие.И те и другиепредставляют собой горючие вещества, имеющие температуру вспышки от 65 до 120 градусов тепла (для жидких битумов), или выше 220 градусов тепла (для вязких битумов). Вязкие дорожные битумы самовоспламеняются при температуре 368 градусов, а жидкие – не ниже 300 градусов тепла.

Битум дорожный вязкий применяется для проведения ремонта и прокладки дорог в теплое время года. А жидкий дорожный битум может использоваться и в холодную погоду, при минусовых температурах воздуха.

Жидкий битум изготавливают путем добавления в вязкий битум растворителей.

Битум дорожный жидкий предназначен для устройства оснований облегченных и капитальных автодорог, а также для их строительства. Дорожный битум вязкий применяется как вяжущий материал при строительстве и ремонте аэродромных и дорожных покрытий, производство асфальтобетонных смесей.

Кровельные битумыявляются горючими веществами, которые вспыхивают при температуре в 240 градусов и самовоспламеняются при 300 градусах по Цельсию. Метод их получения такой же, как и у строительных битумов. Кровельные битумы используются в производстве кровельных материалов, а также для пропитки и получения покровных слоев.

Коррозия цементного камня и способы защиты от неё.

Коррозия вызывается воздействием агрессивных газов и жидкостей на составные части цементного камня.

Коррозионные процессы делятся на 3 группы:

1) охватывает процессы, при которых некоторые составляющие цементного камня растворяются в воде и уносятся по средствам фильтрации. Причиной может служить конденсат, дождевая вода. Выщелачивание Са(ОН)2 можно заметить по появлению белых пятен (подтеков) на поверхности бетона. Для ослабления ограничивают содержание 3CaOAl2O3 до 50%, а также вводят активные минеральные добавки (диатомит, трепел). Т.о., выдерживание на воздухе бетонных блоков и свай, применяемых для сооружения оснований, портовых и гидротехнических сооружений, повышает их стойкость.

2) охватывает процессы, связанные с реагированием веществ, содержащихся в воде, с цементным камнем с образованием легкорастворимых продуктов. Она может происходить в различных формах:

Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободную двуокись углерода.

Кислотная коррозия происходит при действии растворов любых кислот с рН<7.

Защищают с помощью защитных слоев из кислотоупорных материалов.

Магнезиальная коррозия наступает при воздействии на гидроксид Са магнезиальных солей, которые встречаются в грунтовых водах и морской воде.

Коррозия под действием минеральных удобрений особенно вредны аммиачная селитра и сульфат аммония.

Сульфоалюминатная коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей сульфатных ионов 250 мг/л.

Для борьбы применяется сульфатостойкий портландцемент.

Коррозия под влиянием органических веществ органические кислоты быстро разрушают цементный камень, самые агрессивные – уксусная, молочная и винная кислоты.

Щелочная коррозия может происходить в двух формах: под действием концентрированных растворов щелочей и под влиянием щелочей, имеющихся в самом цемента.

Классификация бетонов. Применение бетонов различных видов.

Бетон – искуственный каменный материал, получаемый в результате затвердевания тщательно подобранной перемешанной смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок. Цемента и воды около 15%. Песка и крупного заполнителя около 85%. Бетон – основной строительный материал, универсальный. Можно придать любую форму, изменять свойства. Классификация бетонов по средней плотности: а) ρm>2600 кг/м 3 – особо тяжелый бетон (заполнители – железные руды, стальные опилки, магнетит, гематит, лиманит, стальные зерна, чугунная дробь); б) ρm=2100 — 2600 кг/м 3 – тяжелый бетон (в качестве заполнителей используются плотные, тяжелые, магматические, метаморфические и осадочные породы); в)ρm=1800 — 2100 кг/м 3 – облегченные бетоны (в качестве заполнителей – ГП с ρm=1600-1900 кг/м 3 , песчаники, известняки, искуственные крупные заполнители – кирпичный бой, старый бетон); г)ρm=500 — 1800 кг/м 3 – легкие бетоны. Пористые заполнители: а) природные (пористые ГП – вулканического происхождения: туф, пенза, лава); б) искусственные: специально сделанные (керамзит) и отходы промышленности (поризованные шлаки – шлаковая пенза); д) ρ500 кг/м 3 – особооблегченный бетон. Ячеистые бетоны, теплоизоляционные, крупнопористый бетон на пористом заполнителе. Классификация по виду конструкции: сборные и монолитные (на небольших стройках готовят смесь в передвижной бетономешалке. Широко используются сухие смеси. Классификация бетонов по назначению: гидротехнический, декаротивный, кислотоупорный, жаростойкие, дорожные, бетоны для защиты от радиации.

Читайте так же:
Объем готового раствора цемента

Тяжелый бетон используют для защиты стальной арматуры от коррозии, для цементно-бетонных дорог и полов промышленных зданий. Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии (гидротехнические сооружения, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов…). Крупнопористый бетон используется как теплоизоляционный материал. Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Ячеистые бетоны для ограждающих конструкций, железобетона и др.

Заполнители для тяжёлого бетона. Технические требования. Стандартные методы оценки зернового состава.

Цемент выбирают в зависимости от условий эксплуатации бетона, от вида бетонной конструкции, от заданной марки бетона. Если речь идет о производстве железобетона на заводе, то берется быстро твердеющий цемент. Мелкий заполнитель – песок (природный и искусственный 0,16 – 5 мм. По происхождению пески: горные, овражные, речные, морские. От происхождения зависит форма зерен (окатанные или угловатые). Крупные заполнители: щебень (дробление горных пород и крупного гравия. Щебень чище, чем гравий); гравий (осадочная горная порода, те же примеси, что и в песках).благодаря гладкой поверхности гравия бетоны на гравии более экономичны с точки зрения расхода цемента. У гравия сцепление с цементным камнем. Щебень из искусственного камня (из шлака, кирпичного боя, из дробленого бетона). Вода – чистая, водопроводная. Содержание солей ≤5000 мг/л. SO3 ≤2750 мг/л. добавки в бетонах: 1) химические вещества (0,1 – 2)% Ц (вводится с водой затворения). 2) тонкомолотые минеральные вещества (5 – 20)%Ц (для разбавления высокомарочных цементов). Химические добавки: 1) добавки, регулирующие свойства бетонной смеси (а) добавки стабилизаторы (препятствуют расслоению бетонной смеси), б) водоудерживающие добавки); 2) добавки, регулирующие схватывание и твердение бетона (ускорители и замедлители твердения); 3) добавки, регулирующие плотность и пористость бетона (газообразователи, пенообрахователи); 4) добавки, придающие бетонам специальные свойства (гидрофортность, стойкость к коррозии).

Коррозия цементного камня и способы защиты

В настоящее время цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент начали производить в прошлом столетии. В начале 20-х годов XIX в. Е. Делиев получил обжиговое вяжущее из смеси извести с глиной и опубликовал результаты своей работы в книге, изданной в Москве в 1825 г. В 1856 г. был пущен первый в России завод портландцемента. Портландцемент является минеральным вяжущим веществом, составляющим основу большей части номенклатуры сухих строительных смесей в качестве самостоятельного вяжущего, в смешанных цементных вяжущих системах, в составе цементно-известковых вяжущих, а также различных полимерцементных композиций. Ценные и уникальные свойства портландцемента определяются его способностью при затворении водой образовывать пластичное тесто, со временем, самопроизвольно, за счёт химического взаимодействия в системе, превращающееся в камень. Способность к самоотвердеванию, образование прочного и долговечного камня, экологическая чистота, низкая химическая опасность, пожаровзрывобезопасность в сочетании с низкой стоимостью являются предпосылками для широкого практического применения портландцемента.

Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.

Читайте так же:
Заливка теплого пола соотношение цемент песок

Коррозия цементного камня. Виды коррозии

Различают физическую, химическую, электрохимическую и биологическую коррозии.

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород.

Коррозии растворения носит физико-химический характер (см. ниже коррозии выщелачивания).

Агрессивными по отношению к цементному камню являются все кислоты и многие соли.

Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести (скажем за счет SiO 2 ) еще не исключает коррозии, поскольку она может восстанавливаться за счет отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН) 2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным

Изменением объема. Иногда это все происходит одновременно.

Все кислоты разрушают портландцементный камень

Са(ОН) 2 + НСl = CaCl + 2 H 2 O

Са(ОН) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Хлористый кальций легко растворим, а CaSO 4 может вступать во вза-имодействие с гидроаллюминатами кальция и образовывать гидросульфоаллюминат кальция. Последний кристаллизуется с увеличением объема.

Гипс также кристаллизуется с увеличением объема.

Хотя в пластовых водах нет непосредственно соляной и серной кислот, (но их образование можно предположить), зато имеется достаточное количество солей агрессивных по отношению к цементному камню. К таким солям относятся сульфаты (MgSO 4 , CaSO 4 ), хлориды (MgCl 2 , CaCl 2 ).

Агрессивный сероводород и углекислый газ, которые могут содержаться как в пластовых водах, так и в добываемых нефти и газе.

Рассмотрим основные виды химической коррозии и применение в связи с ними цементов.

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН) 2 . Если концентрация в воде Са(ОН) 2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.

Гидросиликаты и гидроалюминаты кальция имеют тем большую равновесную растворимость, чем выше их основность. Следовательно отщепление гидратов сначала происходит от высокоосновных гидратов, их основность при этом понижается, а устойчивость в данной среде повышается.

Если концентрация гидрата окиси кальция в дальнейшем не будет понижаться, то процесс на этом остановится. Если же концентрация извести будет продолжать понижаться и станет ниже равновесной для вновь образовавшегося гидрата, то отщепление гидрата окиси кальция будет продолжаться вплоть до полного разложения гидросиликатов и гидроалюминатов, с образованием аморфных кремнезема и глинозема. Хотя последние и плохо растворимы в воде, однако они не обладают вяжущими свойствами – прочность и монолитность камня нарушаются.

Эти процессы могут наблюдаться, если цементный камень омывается непрерывно обновляющейся водой или растворами солей, имеющими малую концентрацию Са(ОН) 2 , либо если Са(ОН) 2 связываются содержащимися в растворе веществами в прочные малорастворимые или малодиссоциирующие химические соединения (кальция).

Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок.

Таким образом, более стойкими против коррозии выщелачивания являются низкоосновные цементы (пуццолановые, шлакопесчанистые, БКЗ, известковокремнеземистые).

Более агрессивными в смысле выщелачивания являются «мягкие» воды. Растворимость извести повышается в присутствии хлористого натрия. Значит минерализованные пластовые воды в принципе все агрессивны к цементному камню. Растворимость Са(ОН) 2 повышается с ростом температуры. Значит перечисленные условия требуют применения низкоосновных цементов.

Скорость выщелачивания в значительной степени зависит от коэффициента диффузии. Этому будет способствовать уменьшение относительного содержания жидкости завторения, добавки высокомолекулярных реагентов (гипан, К-4, КМЦ и др).

Облегченные цементы менее стойки к выщелачиванию, за исключением тех у которых в качестве облегчающего компонента использована какая-либо активная кремнеземистая добавка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector